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Abstract: This paper develops a theoretical model to describe nonlinear wave dynamics in a magnetized
plasma. Starting from a reduced set of fluid equations, we employ a reductive perturbation technique
to derive a Korteweg-de Vries-Burgers (KdV-Burgers) equation. The derivation yields explicit, detailed
expressions for the three fundamental coefficients governing the evolution: the nonlinear coefficient P,
the dispersive coefficient Q, and the dissipative coefficient R. This unnormalized evolution equation
provides a direct and physically transparent framework for analyzing the formation and propagation of
nonlinear structures like solitons and shock waves in various plasma environments. Furthermore, we
present a comprehensive nonlinear dynamics and stability analysis, including phase portraits, potential
landscapes, and Lyapunov exponents, to characterize the system’s behavior across different dynamical
regimes.
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I Introduction

Nonlinear wave propagation plays a fundamental role in understanding a wide range of phenomena in
space, astrophysical, laboratory, and fusion plasmas. The study of such nonlinear structures—including
solitons, shocks, double layers, and chaotic waveforms—has attracted considerable attention due to
their direct relevance in magnetospheric turbulence, auroral particle acceleration, reconnection-driven
plasma flows, and ionospheric communication disturbances [1-4]. In these environments, wave evolution
is determined by a complex interplay between nonlinearity, dispersion, and dissipation, leading to the
emergence of coherent structures or disordered, turbulent patterns.

The Korteweg—de Vries (KdV) equation [5-9] has historically served as a prototypical model for
describing weakly nonlinear and weakly dispersive plasma waves, particularly ion-acoustic and electron-
acoustic solitons. However, its applicability becomes limited in realistic plasma environments where
dissipative effects, such as viscosity, Landau damping, and collisional attenuation, significantly influence
the wave evolution [10-12]. To account for dissipative effects, the KdV-Burgers (KdVB) equation was
introduced, incorporating the Burgers-type viscous dissipation alongside KdV-type dispersion. This
hybrid model successfully captures shock formation, soliton decay, soliton-shock hybrid structures, and
even the transition from ordered to chaotic behavior.

Recent spacecraft missions, notably NASA’s Magnetospheric Multiscale (MMS), THEMIS, and Cluster,
have provided high-resolution in-situ observations that reveal the presence of both coherent solitary
waves and broadband turbulent structures in magnetized plasma regions [13,14]. These observations
suggest that plasma wave behavior frequently transitions across multiple regimes—from solitary solitons
to dispersive shocks and ultimately to chaotic or turbulent waveforms—depending on the dominance
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of nonlinear steepening, dispersion, and damping. Such transitions are not adequately described by
traditional KdV or Burgers equations in isolation.

To bridge this gap, the present work investigates an extended form of the KdV-Burgers equation,
incorporating parameterized nonlinear, dispersive, and dissipative coefficients (P, @, R) that allow
systematic exploration of wave behavior under varying plasma conditions. Using a phase-space and
potential landscape approach, we demonstrate how specific combinations of nonlinear steepening,
viscosity-driven dissipation, and dispersive spreading govern the emergence of distinct waveform
regimes—including monotonic shock waves, oscillatory shock fronts, soliton-like structures, soliton
decay patterns, and deterministic chaos.

Unlike previous analytical approaches that focus solely on solitary wave solutions, this work emphasizes
full dynamical characterization of wave evolution, including;:

o Phase portrait analysis and equilibrium classification of nonlinear wave trajectories

o Potential landscape interpretation for wave confinement, stability, and energy trapping
e Flow field evolution for visualizing trajectory divergence and chaotic tendency

o Eigenvalue-based linear stability assessment of equilibrium configurations

o Identification of bifurcation conditions leading to the onset of wave chaos

This comprehensive framework provides a generalized method to classify plasma waveforms based on
their dynamical signatures, rather than solely on their analytical profiles. Notably, we show that chaotic
structures emerge in relatively low-dissipation regimes where dispersion and nonlinearity interplay
in a quasi-Hamiltonian manner, triggering sensitivity to initial conditions—consistent with recent
magnetospheric observations [15].

The manuscript is structured as follows. Section II presents the derivation of the extended KdV-Burgers
equation from fluid plasma dynamics. Section III introduces the phase-space formulation, followed by
detailed dynamical analysis in Section IV. Stability characterization and chaotic regime identification
are presented in Section V.a. Finally, Section VI summarizes the main findings and discusses future
relevance to space plasma modeling and laboratory plasma control physics.

Nonlinear wave propagation plays a fundamental role in understanding a wide range of phenomena in
space, astrophysical, laboratory, and fusion plasmas. The study of such nonlinear structures—including
solitons, shocks, double layers, and chaotic waveforms—has attracted considerable attention due to
their direct relevance in magnetospheric turbulence, auroral particle acceleration, reconnection-driven
plasma flows, and ionospheric communication disturbances [1,2]. In these environments, wave evolution
is determined by a complex interplay between nonlinearity, dispersion, and dissipation, leading to the
emergence of coherent structures or disordered, turbulent patterns.

The Korteweg—de Vries (KdV) equation has historically served as a prototypical model for describing
weakly nonlinear and weakly dispersive plasma waves, particularly ion-acoustic and electron-acoustic
solitons. However, its applicability becomes limited in realistic plasma environments where dissipative
effects, such as viscosity, Landau damping, and collisional attenuation, significantly influence the wave
evolution [10-12]. To account for dissipative effects, the KdV-Burgers (KdVB) equation was introduced,
incorporating the Burgers-type viscous dissipation alongside KdV-type dispersion. This hybrid model
successfully captures shock formation, soliton decay, soliton-shock hybrid structures, and even the
transition from ordered to chaotic behavior.

Recent spacecraft missions, notably NASA’s Magnetospheric Multiscale (MMS), THEMIS, and Cluster,
have provided high-resolution in-situ observations that reveal the presence of both coherent solitary
waves and broadband turbulent structures in magnetized plasma regions [13,14]. These observations
suggest that plasma wave behavior frequently transitions across multiple regimes—from solitary solitons
to dispersive shocks and ultimately to chaotic or turbulent waveforms—depending on the dominance
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of nonlinear steepening, dispersion, and damping. Such transitions are not adequately described by
traditional KdV or Burgers equations in isolation.

To bridge this gap, the present work investigates an extended form of the KdV-Burgers equation,
incorporating parameterized nonlinear, dispersive, and dissipative coefficients (P, @, R) that allow
systematic exploration of wave behavior under varying plasma conditions. Using a phase-space and
potential landscape approach, we demonstrate how specific combinations of nonlinear steepening,
viscosity-driven dissipation, and dispersive spreading govern the emergence of distinct waveform
regimes—including monotonic shock waves, oscillatory shock fronts, soliton-like structures, soliton
decay patterns, and deterministic chaos.

Unlike previous analytical approaches that focus solely on solitary wave solutions, this work emphasizes
full dynamical characterization of wave evolution, including;:

o Phase portrait analysis and equilibrium classification of nonlinear wave trajectories

o Potential landscape interpretation for wave confinement, stability, and energy trapping
e Flow field evolution for visualizing trajectory divergence and chaotic tendency

o Eigenvalue-based linear stability assessment of equilibrium configurations

o Identification of bifurcation conditions leading to the onset of wave chaos

This comprehensive framework provides a generalized method to classify plasma waveforms based on
their dynamical signatures, rather than solely on their analytical profiles. Notably, we show that chaotic
structures emerge in relatively low-dissipation regimes where dispersion and nonlinearity interplay
in a quasi-Hamiltonian manner, triggering sensitivity to initial conditions—consistent with recent
magnetospheric observations [15].

The manuscript is structured as follows. Section II presents the derivation of the extended KdV-Burgers
equation from fluid plasma dynamics. Section III introduces the phase-space formulation, followed by
detailed dynamical analysis in Section IV. Stability characterization and chaotic regime identification
are presented in Section V.a. Finally, Section VI summarizes the main findings and discusses future
relevance to space plasma modeling and laboratory plasma control physics.

II Derivation of the Extended KdV—-Burgers Equation
II.a Governing Fluid Plasma Model

We consider an unmagnetized, collisionally damped plasma consisting of warm ions and isothermal
electrons, where dissipation arises from kinematic ion viscosity and weak ion-neutral collisions. The
system is described by the standard one-dimensional fluid model including ion continuity, momentum
balance, and Poisson’s equation:

ot + a*(niui) 0, (1)
Ou; Ou; d¢ 0,
ot zax _—%4‘778 2 YUi, (2)
0%¢
@ =N, Ne (3)

Here, n;, u;, and ¢ denote ion density, ion fluid velocity, and electrostatic potential, respectively. The
terms 7 and v represent effective viscous and damping coefficients responsible for dissipative energy
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loss in the plasma. Electrons follow the Boltzmann distribution:
ne = exp(¢). (4)
To study weakly nonlinear ion-acoustic waves, we assume small departures from equilibrium and express
the dependent variables as:
ni=1l+en; +eng+-, ui=eug+eugt+--, G=ep1+epyt---, (5)

where 0 < € < 1 is a small perturbation parameter.

II.Lb Reductive Perturbation Method (RPM)
To capture the slow evolution of nonlinear structures, we introduce stretched coordinates:
E=e2@-vt), T=¢%, (6)

where V is the linear wave phase speed, determined by the dispersion relation. Substituting (5) and (6)
into Egs. (1)—(3) and collecting terms of equal powers of € yields a hierarchy of linear and nonlinear
evolution equations.

II.c First-Order Solution: Linear Dispersion
At order e, linearizing the system gives:

up=Vni, ni=ér. (7)
Imposing consistency yields the ion-acoustic linear dispersion relation:

Vi=1. (8)

II.d Second-Order Nonlinear and Dispersive Effects

At order €3/2, balancing nonlinear steepening and dispersion gives the Korteweg-de Vries-type contri-
butions, while dissipative effects appear from viscous and collision terms. After algebraic simplification,
the ion-acoustic wave evolution equation emerges:

99 9 00 0%

— + Po— — —R— =0. 9

or 0% T 9o e ©)
This is the generalized KAV-Burgers (KdVB) equation, where ¢ now represents the electrostatic
potential (or equivalently, density perturbation). The coefficients are:

P= gV, (nonlinearity strength) (10)
1

Q= iV_l, (dispersion strength) (11)

R= (g + %) , (dissipation strength) (12)

Here, P, @, and R govern the relative dominance of nonlinear, dispersive, and dissipative dynamics,
respectively. In particular:

e P >0 leads to wave steepening and promotes shock formation.
e @ > 0 allows dispersion to balance nonlinearity, supporting solitons.

e R > 0 causes wave amplitude decay and shock dissipation.
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II.e Interpretation of the KdVB Equation

The structure of Eq. (9) illustrates that the dynamics are governed by the relative magnitude of the
three competing effects:

L) L) 3¢ 0%
3 + P%—é_ + Qa—gg - Ra—g2
~~ —— ~——

wave evolution  ponlinear steepening  dispersion  dissipation

=0.

Depending on which terms dominate:
e If @ > R: Soliton-like or oscillatory wave structures appear.
o If R > @Q: Dissipative monotonic shocks form.
o If R ~ @: Hybrid oscillatory shocks emerge.
e If P, @, and R compete comparably: chaotic waveforms can form.

This equation serves as the primary mathematical framework for the nonlinear wave investigation
presented in this work. In the next section, we reformulate Eq. (9) into a phase-space representation,
enabling a full dynamical system analysis of plasma wave morphology, stability, and chaotic transitions.

III Phase—Space Formulation and Dynamical System Repre-
sentation

IIl.a Transformation to Traveling Wave Coordinates

To study the spatiotemporal evolution of ion-acoustic wave structures, we consider traveling wave
solutions of the form [16-30]:

¢(£77—) = ¢(C)7 C = § - UT? (13)
where U denotes the normalized wave speed in the moving frame. Substituting Eq. (13) into the
KdV-Burgers equation (Eq. (9)) transforms the partial differential equation into a third-order ordinary
differential equation:

d3¢ d%¢ d¢ d¢

—Q 2+ R _ppf LU . 14
Qoo t B ~Pogr t UG (14)
Integrating once with respect to ¢ and assuming localized disturbances (¢, d¢/d¢ — 0 as |{| — o), we

obtain: 26 i
P o, U
QdCQ RdC 2¢ ¢=0. =

III.b Formulation as a Dynamical System

To express Eq. (15) in phase-space form, we introduce:

do_ - do_dy

= = — == 16
¢=u, =Y i ac (16)
Substituting these into Eq. (15) yields the coupled system:
dx
— 17
=Y (17)
P
@ — E —ga:+—a:2 (18)

- QY Q" 2"
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Equations (17)—(18) represent the plasma wave evolution in a two-dimensional dynamical system, where
x represents the wave amplitude (¢) and y represents its spatial gradient (d¢/d().

IIl.c Fixed Points and Equilibrium Analysis
Equilibrium points (x*, y*) satisfy:

(cil% =0, Z—ZZ =0.
From Eq. (17), y* = 0. From Eq. (18):
%(x*)z — %x* =0=z* <J;x* - U) =0.
Thus, the system has two equilibrium points:
E; :(0,0), E;: (2]2], O> . (19)

III.d Jacobian and Linear Stability

To examine local stability, we linearize Eqs. (17)—(18) near the equilibria by evaluating the Jacobian:

J(%?J)Z(_gigx R>~ (20)

Evaluating at Eq, = (0,0) gives:

The characteristic equation is:

The eigenvalues are:

ey _ R R\ U
Als _QQi ( ) o (22)

IIl.e Classification of Wave Structures

Based on the nature of the eigenvalues, the corresponding plasma wave structures can be classified:

Eigenvalue Type | Equilibrium Waveform Behavior

Real, opposite sign | Saddle point Unstable shock, soliton breakdown
Real, same sign Nodal point Monotonic shock wave

Complex, Re(A\)< 0 | Stable spiral Damped oscillatory shock wave
Complex, Re(A\)> 0 | Unstable spiral | Growth oscillations, chaos precursor
Pure imaginary Center Undamped soliton-like oscillations

Table 1: Classification of waveform behavior based on eigenvalue signatures from phase-space analysis.

This classification reveals that chaotic plasma wave tendencies occur when:
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P¢ ~ Q¢§§§ and Rd)gg < ].,

i.e., when dissipation is weak, allowing dispersive and nonlinear processes to dominate.

III.f Potential Landscape Interpretation

The KdVB equation may also be interpreted as motion in a pseudo-potential function V' (z):

dy ~ dV(z) R
where: U P
V( ):—E$2+@ 3 (24)

This interpretation shows:
¢ Single-well potential — monotonic shock structure.
¢ Double-well potential — oscillatory shock or dispersive wave train.

¢ Flattened potential — loss of confinement — chaotic tendency.

IIl.g Dynamical Significance
The phase-space approach enables:
o Visualization of solitons as closed trajectories around stable centers.
e Shock waves as trajectories approaching saddle-node points.
¢ Oscillatory shocks as spiral trajectories.
¢ Chaotic waveforms as diverging orbits in weakly damped phase-space.

This establishes a direct link between plasma parameters (P, Q, R) and the observable waveform
morphology in magnetospheric plasma, laying the groundwork for the nonlinear dynamic analysis
presented in Section IV.

IV Results and Waveform Morphology Analysis
The extended KdV-Burgers equation incorporates nonlinear steepening (P), dispersive spreading (Q),

and dissipative attenuation (R), giving rise to diverse plasma waveforms. The exact nature of wave
evolution depends on the relative magnitudes of these effects, as summarized:

Wave morphology = Function of (P,Q, R,U).

By systematically varying (P, @, R), four distinct classes of nonlinear ion-acoustic waves emerge:

o Monotonic shock waves (dissipation-dominated)

Oscillatory shocks (dispersive—dissipative interplay)

Soliton-like coherent structures (dispersion-dominated)

Chaotic waveforms (weak dissipation, strong nonlinearity)
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IV.a Case I: Monotonic Shock Waves (R >> Q)

When dissipative effects dominate over dispersion, nonlinear wave steepening produces shock-like
structures with no oscillatory tails. The phase portrait shows strong damping, with trajectories rapidly
converging to a stable node in the (z,y) phase plane.

R[> |Q, Re(A\) >0,  Im()\) — 0.

The waveform is characterized by a steep leading front, approaching equilibrium monotonically.

Characteristics:
Table 2: Characteristics of Shock Wave Structures in Plasma
Feature Description
Shape Single-step discontinuity (shock)
Phase portrait Stable node
Stability Locally stable
Physical example Collisional plasma, ion-neutral damping

2U
Shock amplitude ~ R Shock thickness ~ %

IV.b Case II: Oscillatory Shock Waves (R ~ Q)

When both dispersion and dissipation are comparable, the shock front becomes oscillatory. The damping
is insufficient to suppress dispersive wave trains, resulting in an oscillatory shock tail.

IRl ~1Q,  Re(A) >0, Im(})#0.

The waveform exhibits damped oscillations behind the shock front (Fig. ??). The phase portrait reveals
inward spiraling trajectories converging to a stable focus.

Characteristics:

Table 3: Characteristics of Dispersive Shock Wave (DSW) Structures in Plasma

Feature Description

Shape Oscillatory tail behind shock

Phase portrait Stable focus

Stability Damped oscillatory

Physical example Weakly collisional plasma; magnetosheath turbulence

The decay rate is controlled by R, while oscillation frequency is primarily determined by Q.

IV.c Case III: Soliton-Like Coherent Structures (Q) > R)

For nearly dissipation-free plasma (R — 0), dispersion balances nonlinearity, leading to soliton-like
localized structures. The phase portrait features closed periodic orbits around a center.

Q| > |R|,  Re(A\) =0, Im(\)#0.
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Soliton solution shape (approximate analytical form):

¢<<)z<1>osech2< 4UQ<>7 By =20

Characteristics:

Table 4: Characteristics of Solitary Wave Structures in Magnetospheric Plasma

Feature Description

Shape Solitary pulse, localized

Phase portrait Closed orbit (center)

Stability Non-dissipative, neutrally stable

Physical example Magnetospheric solitons, electrostatic solitary waves (ESWs)

IV.d Case IV: Chaotic Waveforms (P, () dominate; R small)

When dissipation is insufficient to confine wave energy, the extended KdV-Burgers equation exhibits
sensitive dependence on initial conditions, route to chaos, and turbulent-like structures. The phase
portrait shows diverging, unstable spirals with no long-term confinement.

R—0, Re(A) >0, Im(\) #£0.

Key characteristics of chaotic plasma waveforms:
e Presence of unstable spiraling trajectories in phase space
e Diverging orbits leading to loss of waveform coherence
e No recurrence or closed paths in phase space
o Energy cascades across scales, resembling plasma turbulence

Chaotic waveforms represent a transition from deterministic nonlinear waves to spatiotemporal disorder,
frequently observed in turbulent magnetospheric plasmas and shock-sheath regions sampled by MMS.

IV.e Wave Morphology Classification Summary

Table 5: Classification of Nonlinear Waveforms Based on Dominant Parameters in Extended KdV—
Burgers Dynamics

Dominant Parame-
ter

Waveform Type

Wave Stability

Phase-Space Signature

R>Q Monotonic shock Stable Node
R~Q Oscillatory shock Damped stable Stable spiral
Q>R Soliton Neutrally stable Center (closed orbits)

P, @ strong, R — 0

Chaotic structures

Unstable

Unstable spiral / diverging
trajectories

IV.f Physical Interpretation for Space Plasma Observations

These results provide a unified framework linking plasma fluid parameters to physically observable
nonlinear wave structures in real space plasma environments.
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Wave Type MMS/THEMIS Observation Context
Solitons Electrostatic solitary waves (ESWs) in magnetotail recon-
nection

Oscillatory shocks | Dispersive shock fronts in bow shock/magnetosheath
Monotonic shocks | Lower hybrid shocks with collisional damping
Chaotic waveforms | Turbulent reconnection, plasma sheet boundary layer

Table 6: Observed wave types and their corresponding space plasma contexts from MMS/THEMIS
missions.

V Dynamical Regimes and Nonlinear Wave Behavior in Ex-
tended KdV—-Burgers Framework

The nonlinear plasma wave dynamics observed through MMS data, when modeled using the extended
KdV-Burgers (KdVB) equation, reveal rich and diverse wave patterns shaped by the interplay of
nonlinearity, dispersion, and dissipation. Numerical simulations conducted using the Solstorm-PY
pipeline indicate four prominent dynamical regimes, each corresponding to specific plasma conditions
characterized by empirical dispersion strength, nonlinear coefficients, and viscosity parameters. These
regimes are presented below with their corresponding waveform behaviors.

V.a Regime I: Chaotic Tendency under Moderate Nonlinearity and Dissi-
pation

When dissipation and nonlinearity are simultaneously present with comparable magnitudes, the wave
evolution becomes irregular, displaying intermittent energy bursts, waveform inversion, and spectral
broadening. These features are characteristic of weak turbulence and nonlinear wave—particle interaction.
Though not fully chaotic in the Lyapunov sense, the waveform displays quasi-chaotic characteristics,
indicating a transition zone between regular and turbulent plasma regimes.

KdV-Burger Dynamical System: Chaotic Tendency

ency
P'=-100,0 =40,k =018

Figure 1: Chaotic waveform evolution under moderate nonlinearity and dissipation, showing intermittent
irregularity and waveform distortion.
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V.b Regime II: Competing Nonlinearities and Dispersive Stabilization

In this regime, competing higher-order nonlinear terms and dispersive effects balance each other,
forming solitary wave structures with oscillatory tails. The self-stabilization tendency prevents wave
steepening, allowing the emergence of metastable solitons. These soliton-like structures are precursors
to dispersive shock waves (DSWs) and resemble MMS-observed plasma waveforms under magnetopause
reconnection events.

KdV-Burger Dynamical System: Competing Nonlinearities

Competing Nonlinearities
P'=-60,0 =30,k =0.08
Ficld Evolution

v

Figure 2: Competing nonlinearities and dispersive effects generating metastable soliton-like structures.

V.c Regime III: Extreme Nonlinearity and Shock Formation

When nonlinear steepening significantly exceeds dispersion, the waveform transitions into a shock-like
structure with rapid front formation and energy localization. These compressive structures resemble
observed bursty bulk flows (BBFs) in MMS data during magnetotail reconnection. Dissipation plays a
secondary role here, with nonlinearity dominating the waveform morphology.

V.d Regime IV: Nonlinear Oscillatory Regime with Envelope Modulation

In the final regime, weak dissipation and moderate dispersion allow the development of oscillatory
nonlinear wave trains with envelope modulation. The emergence of breathing structures, envelope
solitary waves, and quasi-periodic wave packets indicates the presence of modulational instability
(MI). This phenomenon is consistent with MMS-observed nonlinear wave trains in the near-Earth
magnetosphere.

These four regimes comprehensively demonstrate the capacity of the extended KdV-Burgers model to
replicate a wide spectrum of plasma wave behaviors in naturally occurring space environments.

V.e Lyapunov Exponent and Chaos Analysis

The asymptotic behavior of nearby trajectories is quantified by the Lyapunov exponents (\). A positive
Lyapunov exponent indicates chaotic behavior, while negative exponents indicate stable fixed points or
limit cycles.
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KdV-Burger Dynamical System: Extreme Negative Nonlinearity

Figure 3: Extreme nonlinear steepening resulting in shock-type wavefront formation and energy

localization.

KdV-Burger Dynamical System: Nonlinear Oscillator

Nonlinear Oscillator
P'=-25,0 =-10,R =008
mmmmmmmmmmmm

Figure 4: Nonlinear oscillatory regime with envelope modulation and breathing-type wave packet

evolution.
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Extreme Negative Nonlinearity
P'=8.0,Q'=—4.0, R'=0.12

Figure 5: Chaotic Tendency (P’ = —10.0,Q" = 4.0, R" = 0.18). The phase space shows a saddle point
at Ey and an unstable spiral at E;, indicative of emerging chaos in the system dynamics.

Nonlinear Oscillator |y, >
B ey Lyapunov Exponent Analysis: Con

ponent
»

Chaotic Tendency
P=10.0, Q'=4.0. R=0.18

o
nov Exponent

0 E
Time @ Time @

Figure 6: Lyapunov exponent analysis: Convergence over time for different dynamical regimes. (a)
Nonlinear Oscillator (A; =~ 120.61). (b) Extreme Negative Nonlinearity (A1 ~ 124.38, A2 ~ 168.07). (c)
Competing Nonlinearities (A, & 125.47). (d) Chaotic Tendency (A1 & 127.10). The presence of positive
Lyapunov exponents confirms chaotic dynamics in several regimes.
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Figure 6 shows the convergence of the largest Lyapunov exponents (A1) over time for four distinct
parameter sets. The "Competing Nonlinearities" and "Chaotic Tendency" regimes exhibit significant
positive Lyapunov exponents, confirming the emergence of deterministic chaos.

V.f Parameter Dependence of System Stability

The system’s stability is highly sensitive to the parameters P, @, and R. Figure 7 illustrates how the
Largest Lyapunov Exponent (LLE) varies with these parameters.

Lyapunov Exponent vs P'_ parameter Lyapunov Exponents Lyapunoy Exponent vs Q'

por
v Exponent

Lyapunoy Exponent vs R' Lyapunoy Exponent vs Combined

120.601

Figure 7: Parameter dependence of the Largest Lyapunov Exponent (LLE). The plots show LLE vs.
P’ (nonlinearity), LLE vs. Q' (dispersion), and LLE vs. R’ (dissipation). The transition from negative
to positive LLE values marks the onset of chaos, which is strongly influenced by the balance between
P, Q' and R

Key observations include:

o Nonlinearity (P): Highly negative values of P strongly promote chaos, as seen by the sharp
increase in LLE.

o Dispersion (Q): The effect of @ on chaos is non-monotonic and interacts complexly with P.

« Dissipation (R): Increasing R generally suppresses chaos, moving the LLE towards negative
values, as dissipation damps out the complex dynamics.

This parametric study allows for the identification of stable operational regimes for plasma control
applications and chaotic regimes relevant to turbulence studies.

VI Conclusion

The extended KdV-Burgers framework, informed by MMS in-situ plasma observations, proves to be a
robust model for describing nonlinear magnetospheric wave dynamics. By incorporating dissipation,
higher-order nonlinear terms, and dispersive effects, the model successfully reproduces chaotic fluctua-
tions, metastable solitons, shock structures, and oscillatory wave packets. These regimes correspond to
real physical phenomena such as turbulent magnetosheath waves, magnetic reconnection signatures,
bursty bulk flows, and envelope-modulated wave trains. This work validates the applicability of the
extended KdVB model in practical space plasma diagnostic and predictive modeling.
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VII Future Scope

Future advancements include:

¢ Incorporation of machine learning (AI/ML) to automatically identify dynamic transitions between
KdVB regimes using MMS time-series datasets.

o Extension of the model to include fractional-order dissipation and quantum corrections for space
plasmas in extreme environments.

o Real-time forecasting applications for space weather, particularly in satellite communications,
GPS signal disruption, and radiation belt dynamics.

e Coupling of the extended KdVB framework with 3D magnetohydrodynamic (MHD) solvers for
multi-scale simulations of reconnection and turbulence.

o Laboratory plasma validation using cold atmospheric plasma jets and magnetized plasma chambers.

These directions will further enhance our understanding of nonlinear plasma dynamics and their impact
on space weather forecasting, space mission operations, and defense technologies.
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