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Abstract: The formation of ion-acoustic solitary waves in an unmagnetized plasma with ions, negatively
charged warm dust grains, and electrons under the pressure variation has been theoretically and
numerically investigated. The governing set of normalized fluid equations are reduced to the Korteweg-
de Vries (KdV) equation by the reductive perturbation method to obtain the potential wave amplitude.
Ion-acoustic compressive and rarefactive solitons of amplitudes are reported due to the variation of
dust to ion density ratio r for fast ion-acoustic modes. The inclusion of electron inertia with pressure
variation of the spaces not only significantly modifies the basic features of dust ion-acoustic solitons
but also introduces a new parametric regime shown to exist.

Keywords: Solitary waves, KdV equation, Solitons, Negative dust, Electron inertia, Unmagnetized
plasma.

I Introduction
A productive area of study for solitary waves in plasma is space, a glamorous and alluring laboratory
of nonlinear composition. There are two kinds of dust grains in space. The polarity of plasmas is
opposite: (1) large grains are negatively charged, and (2) small grains are positively charged. Due to
the fact that heavy dust moves more slowly than ions and electrons, which are accessories in the new
time scales, the dust acoustic waves are a very low-frequency, longitudinal compressional wave that
involves the moving dust particles. Many researchers have examined the occurrence of ion-acoustic
solitary waves in dust charge particle plasma systems in the past few decades, both theoretically [1–8]
and experimentally [9,10]. Dusty plasma is found in space, for example, in interstellar clouds, planetary
rings, comets, and nebulae. It is possible to create fusion experiments, plasma processing reactions,
and other laboratory experiments in a lab setting. Since dusty plasma nonlinear waves are present
in many different locations, including rings, the magnetosphere, asteroid zones, thin-film coatings,
plasma crystals, etc., they are one of the most intriguing research topics in recent plasma physics.
Dusty plasmas have different waves than regular plasmas, and when different kinds of dust-charged
grains are present in a plasma, several different wave modes are created. These include the dust ion-
acoustic mode [11,12], dust-acoustic mode [13,14], dust-lattice mode [15], dust Berstain-Green-Kruskal
mode [16], Shukla-Verma mode [17], and others. These modes are producing new and important results.
Furthermore, new wave modes arise when heavy charged particles are present. In lab investigations, the
dust ion-acoustic waves have been detected [12,18]. According to theory, Rao et al. [13] initially reported
the presence of dust acoustic solitary waves with exceptionally low phase velocity in an unmagnetized
dusty plasma. Mendoza-Briceno et al. [19] explore how the temperature of the dust fluid and the
nonthermal distribution of ions significantly alter the characteristics of the large amplitude electrostatic
solitary structures. Barman and Talukdar [20] investigated electron inertia and nonlinear ion-acoustic
waves in a heated, dusty plasma. They discovered both compressive and rarefactive solitons throughout
this work. Dust ion acoustic Korteweg-de Vries (KdV) and modified Korteweg-de Vries (mKdV) solitons
in dusty plasmas with varying temperatures were compared by Kalita and Das [21]. In the presence of
stationary dust, they discovered both compressive and rarefactive Korteweg-de Vries (KdV) solitons
of intriguing character that are composed of ions and electrons as well as pressure variations in both
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components. The weak frequency dust-acoustic solitary waves in electromagnetic and electrostatic
waves are theoretically researched by [22,23] and by experts in dust-ion acoustics [24–27].

In this work, we have used the reductive perturbation approach to study ion-acoustic solitary waves in
a three-component plasma made up of ions, negatively charged mobile dust, and electrons. Several
plasma factors’ distinctive effects on the nature and generation of ion-acoustic solitons under various
novel circumstances are discussed. The paper is structured as follows: Section 1: ’Introduction’; Section
2: ’Basic Equations governing the dynamics of motion’; Section 3: ’Derivation of KdV Equation and
Its Solutions’; and Section 4: ’Results and Discussions’. At the conclusion, "references" are provided.

II Basic Equations Governing the Dynamics of Motion
The three-component collisionless ion-acoustic wave propagation in a heated, unmagnetized plasma
including ions, electrons, and negative dust grains has been examined. We also take entire species’
pressure variations into account. The fluid normalized equations that follow provide the fundamental
equations governing the plasma dynamics of ion-acoustic waves of motion and continuity for such a
plasma model.
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The suffixes i, d, and e in this context stand for positively charged ions, negatively charged dust grains,
and electrons, respectively; The ratio of dust grain to positive ion mass is Q = md/mi ≫ 1, while
the ratio of electron to positive ion mass is Q′ = me/mi. With Ti/Td and zd being the amount of
elementary charges present on the dust particle, σ = Ti/Te is the ion to electron temperature ratio. The
unperturbed electron number density, ne0, normalizes the particle number densities, ni, nd, and ne in
the aforementioned equations; The ion-acoustic speed cs =

√
kbTe/mi determines the velocities ui, ud

and ue; the characteristic ion pressure kbne0Ti determines the pressures pi, pd and pe; the time t is
determined by the inverse of the characteristic ion plasma frequency ω−1

pi
=

√
mi/4πne0e2; the distance

x is determined by the Debye length λDe
=

√
kbTe/4πne0e2; the electron pressure pe is determined

by the characteristic electron pressure pe0 = ne0kbTe; and the electric potential φ is determined by
(kbTe/e), where Te is the characteristic electron temperature and kb is the Boltzmann constant.
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III Derivation of KdV Equation and Its Solutions
We have examined the propagation of ion-acoustic waves in a warm, unmagnetized plasma including ions,
electrons, and negative dust grains. To describe the propagation of the small amplitude ion-acoustic
waves, we apply the reductive perturbation approach to the fundamental set of equations (1)–(10). In
order to do this, we present a novel stretched variable as

ξ = ϵ
1
2 (x − Ut), τ = ϵ

3
2 t (11)

Where ϵ is a small non-dimensional parameter that measures the strength of nonlinearity and U is
the phase velocity of the waves. Now, we expand the flow variables asymptotically about the steady
equilibrium state in terms of ϵ as follows:

ni = ni0 + ϵ1ni1 + ϵ2ni2 + ϵ3ni3 + . . .

nd = nd0 + ϵ1nd1 + ϵ2nd2 + ϵ3nd3 + . . .

ne = 1 + ϵ1ne1 + ϵ2ne2 + ϵ3ne3 + . . .

ui = ϵ1ui1 + ϵ2ui2 + ϵ3ui3 + . . .

ud = ϵ1ud1 + ϵ2ud2 + ϵ3ud3 + . . .

ue = ϵ1ue1 + ϵ2ue2 + ϵ3ue3 + . . .

pi = pi0 + ϵ1pi1 + ϵ2pi2 + ϵ3pi3 + . . .

pd = pd0 + ϵ1pd1 + ϵ2pd2 + ϵ3pd3 + . . .

pe = 1 + ϵ1pe1 + ϵ2pe2 + ϵ3pe3 + . . .

φ = ϵ1φ1 + ϵ2φ2 + ϵ3φ3 + . . . (12)

Equating the coefficients of the first lowest-order of ϵ using the transformation (11) and expansions (12)
in equations (1)–(9) and the boundary constraints ni1 = nd1 = 0, ui1 = ud1 = 0 and φ1 = 0 at |ξ| → ∞,
we obtain
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where L = U2 − 3σ, M = U2Q − 3σ, N = U2Q
′ − 3zd.

Again, using (11) and (12) in equation (10), we obtain

1 + zdnd0 − ni0 = 0 (14)

⇒ nd0

ni0
= r,

1
ni0

= 1 − zdr (15)

Where r = nd0
ni0

is negative to positive ion number density ratio, and ni0 = pi0, nd0 = pd0.
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ne1 + zdnd1 − ni1 = 0 (16)

Using the expressions of ni1, nd1 and ne1 from (13) and (14) in (16), the expression for phase speed U
is found as
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= 0 (17)

Since equation (17) is quadratic in U , it depicts two different kinds of ion-acoustic modes that propagate
at various phase velocities, namely
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Again, equating the coefficients of second higher-order terms of ϵ from (1)–(7), we get the followings,
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Similarly, from equation (10), we obtain
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Eliminating ui2, ud2, ue2, pi2, pd2 and pe2 from (19)–(27) and then using the first order terms from (13),
we get,

∂ni2

∂ξ
= 2Uni0zd

(U2 − 3σ)2
∂φ1

∂τ
+ ni0zd

U2 − 3σ

∂φ2

∂ξ
+ 3ni0z2

d(U2 − 3σ)
(U2 − 3σ)3 φ1

∂φ1

∂ξ
(30)

∂nd2

∂ξ
= 2QUni0zd

(U2Q − 3σ)2
∂φ1

∂τ
+ nd0zd

U2Q − 3σ

∂φ2

∂ξ
+ 3nd0z2

d(QU2 + σ)
(QU2 − 3σ)3 φ1

∂φ1

∂ξ
(31)

∂ne2

∂ξ
= −2Q

′
Uzd

(U2Q′ − 3σ)2
∂φ1

∂τ
− zd

U2Q′ − 3σ

∂φ2

∂ξ
+ 3z2

d(U2Q
′ + zd)

(U2Q′ − zd)3 φ1
∂φ1

∂ξ
(32)

Now, putting the values of ∂ni2
∂ξ , ∂nd2

∂ξ and ∂ne2
∂ξ from (30)–(32) into the equation (29) and using the

relations (14) and (16), the KdV equation is obtained as
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where the nonlinear coefficients α and dispersion coefficient β are given by

α = 3zd(L + 4σ)M3N3 − 3z2
dr(M + 4σ)L3N3 − 3(1 − rzd)(N + 4zd)L3M3
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In this model of plasma, we observed that the nonlinear ion-acoustic soliton exist when U2 ̸=
3σ, 3σ/Q, 3zd/Q

′ subject to the condition zd < 1/r and r ≤ 0.5.

The Korteweg-de Vries (KdV) equation (33) can be solved for stationary solitary waves by introducing a
new transformation, η = ξ − V τ , where V is the soliton speed in the linear η-space. By integrating this
transformation into the partial differential equation (33), the solitary wave solution can be obtained as

ϕ1 = φ0sech2
( η

∆

)
(36)

Where φ0 = 3V/α is the amplitude of the ion-acoustic soliton and ∆ =
√

4β/V is the width of the
ion-acoustic soliton.

DOI: 10.5281/zenodo.15670374 Page 34

doi.org/10.5281/zenodo.15670374


NATURAL SCIENCES AND APPLIED TECHNOLOGY (ISSN: 3049-4206)
Vol:2; Issue:1; March 2025; Article ID: RA-25-MS-101 Khanam et.al.

Figure 1: Variation of nonlinear coefficient α versus zd for different values of Q.

Figure 2: Variation of dispersion coefficient β versus zd for different values of Q.

Figure 3: Variation of nonlinear coefficient α versus Q for different values of zd.
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Figure 4: Variation of dispersion coefficient β versus Q for different values of zd.

Figure 5: Variation of amplitude (φ0) versus V for different values of r.

Figure 6: The graph of ϕ1(η) versus η for different values of Q.
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Figure 7: The graph of ϕ1(η) versus η for different values of zd.

Figure 8: The graph of ϕ1(η) versus η for different values of σ.

Figure 9: The graph of ϕ1(η) versus η for different values of V .
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IV Results and Discussion
In this model, we have used the KdV equation to establish the ion acoustic solitons in a dusty plasma
made up of positive ions, negative dust grains, and electrons under pressure change. According to our
research, only the fast ion-acoustic mode exists because of electron inertia.

In Figure 1, we showed the variation of nonlinear coefficient α and Figure 2, dispersion coefficient β
versus zd for different values of dust grain to positive ion mass ratio Q = 1.18, 1.20, 1.22, 1.24, 1.25 and
fixed few values of σ = 0.1, Q

′ = 0.0005446623, r = 0.001, V = 0.1. Where we found that the growth of
rarefactive soliton α (Figure 1) is nonlinearly decreases as the direction of wave propagation approaches
the direction of zd as increasing values of Q. On the other hand, the absolute linear growth of nonlinear
coefficient is due to inactive role of zd. Of course, β (Figure 2) is of the compressive soliton is linearly
increases with increasing values of as zd well as Q.

In Figure 3, we observe that variation of nonlinear coefficient α and Figure 4 dispersion coefficient
β versus Q with different values of zd = 9, 10, 11, 12, 13 and fixed few values of σ = 0.01, Q

′ =
0.0005446623, r = 0.1, V = 0.1. Where we found that α (Figure 3) is rarefactive raises linearly at the
amount of increase of zd as well as Q and for the growth values of rarefactive soliton sharply increases
with dust grain to positive ion mass ratio Q. Again, β (Figure 4) exhibit compressively increase as
increasing values of zd as well as Q. The results obtained in Figure 3 seem to differ with the results
obtained in Figure 4 for the number of elementary changes (zd) cases.

Figure 5 shows that for dust to ion density ratios r = 0.007, 0.008, 0.009, 0.011, and 0.012, compressive
and rarefactive Korteweg-de Vries (KdV) solitons exist. The consequences of positive and negative
possibilities are shown, respectively. With fixed σ = 0.1, Q

′ = 0.0005446623, Q = 1000, and zd = 100,
compaction occurs when r > 0.01001 and rarefaction occurs when r < 0.01001. According to this, r is
crucial for the presence of rarefactive and compressive soliton feature. After a certain r∗(≈ 0.01001)
indicates an unexplained region with the same other characteristics, the rarefactive soliton’s character
transforms into a compressive soliton.

The solitary wave potential ϕ1(η) as a function of η for various values of Q = 1.18, 1.20, 1.22, 1.24, and
1.25 when σ = 0.1, r = 0.001, Q

′ = 0.0005446623, zd = 100, and V = 0.1 is depicted in Figure 6. We
observed that as Q increases, the rarefactive ion-acoustic soliton’s amplitude and width increase as well.
The solitary wave potential ϕ1(η) as a function of η for various values of zd = 9, 10, 11, 12 and 13 when
σ = 0.01, r = 0.1, Q = 1000, Q

′ = 0.0005446623 and V = 0.1 is depicted in Figure 7. As zd grows, we
observe that the rarefactive ion-acoustic soliton’s width somewhat increases and its amplitude slightly
decreases.

Next, as illustrated in Figure 8–9, we analyze how the solitary wave potential ϕ1(η) given in
(36) varies with η. The effects of negative possibilities are displayed with lower differences of
σ = 0.012, 0.013, 0.014, 0.015, 0.016 and V = 0.1, 0.2, 0.3, 0.4, and 0.5, respectively. Here, we found
that the rarefactive ion-acoustic soliton propagates and that, with rising values of σ and fixed
r = 0.001, zd = 100, Q = 1000, Q

′ = 0.0005446623, and V = 0.1, the amplitude of the solitary
pulse reduces as the increasing values of the pulse gradually expands (Figure 8). Furthermore, with
increasing values of σ and fixed r = 0.001, zd = 100, Q = 1000, Q

′ = 0.0005446623, and V = 0.1, we
discovered that the rarefactive ion-acoustic soliton’s amplitude progressively grows while its width
gradually reduces (Figure 9).

V Conclusion
The dynamical characteristics of the propagation of small amplitude DIA solitary waves in an un-
magnetized plasma model, which includes electrons, ions, and negatively charged dust grains, have
been computationally examined in this work. The reductive perturbation method is used to determine
the KdV equation and to acquire their solitary wave solutions. We discuss numerically the effects of
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physical parameters like dust grain to positive ion mass ratio Q, electron to positive ion mass ratio
Q

′ , dust particle zd and σ is the ion to electron temperature ratio over DIA solitary wave potentials
represented by the KdV equations, when the results observed in this study can be contracted as follows:

1. There are two different types of wave modes identified in the current plasma model: slow acoustic
modes and fast DIA acoustic modes. However, when extracting KdV equations, only rapid DIA
modes are taken into consideration.

2. The dust to ion density ratio r exhibits both rarefactive and compressive Korteweg-de Vries
(KdV) solitons.

3. There are only rarefactive Korteweg-de Vries (KdV) solitons that show the σ, V, zd and Q effects.
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